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Abstract. The Fmsm - R j  phase transition Of M"ZrF6 fluorides (M" = CO, Zr) is analysed 
by means of a microscopic model, developed in the framework of Landau theory, including 
twocoupledorder parameters, namelytheelasticstrain withF,,symmetry, and the Mf'(Zr)F6 
octahedra rotation coordinate. The model is able to account for the first-order type of this 
transition, together with its 'improper' ferroelastic character. In addition, expressions are 
derived to account for the static and dynamic properties of the order parameters, which are 
able to reproduce consistently the experimental data obtained in the previous two papers. 

1. Introduction 

The first-order structural phase transition occurring in ordered fluorides with formula 
M"ZrF6 (M" = CO, Zn) has been studied by means of neutron and x-ray diffraction [l] 
as well as Brillouin and Raman scattering measurements [2]. From the experimental 
results so obtained, it has been shown that the transition connects a high-temperature 
cubic phase, of the ordered R e o ,  type [3], with space group Fmgm, to a low-temperature 
rhombohedral modification, with space group R3. Furthermore, it has been concluded 
that the transition is ferrodistortive and 'improper' ferroelastic, driven by M"(Zr)F6 
octahedra rotations. The lattice instability is induced by zone-centre rotatory soft modes, 
so that the transition mechanism is essentially of displacive nature. However, an order- 
disorder contribution may also take place in the close vicinity of the transition tem- 
perature [ 1,2]. 

The purpose of this paper (111), which is the last one of the series, is to describe the 
Fmgm t, Rg phase transition of M"ZrF6 ordered fluorides by means of a microscopic 
model developed in the framework of Landau theory. This model includes two coupled 
order parameters, e and R,  corresponding respectively to the FZg strain and the F1, 
rotatory coordinate of the octahedra, the temperature dependence of which has been 
measured by means of neutron diffraction experiments [l]. Then, a phase diagram is 
obtained, including the cubic phase Fm3m (e = 0, R = 0) and two different rhombo- 
hedral phases, with R3m (e  # 0 ,  R = 0) and R3 (e # 0, R # 0) symmetries, which makes 
possible the occurrence of a first-order transition from Fm3m to R3, as observed experi- 
mentally. The susceptibilities of the order parameters will also be considered through 
this model, and compared to the Brillouin and Raman scattering results [2] ; hence, the 
mutual consistency of all experimental data will be established. 

0953-8984/90/367395 + 12 $03.50 0 1990 IOP Publishing Ltd 7395 
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2. Themodel 

2.1. Basic statements 

From general group-theoretical considerations [2], the Fm3m e, R3 phase transition 
involves at least two order parameters, let us say 11 and E ,  with F,, and F,, symmetry 
respectively. This comes merely from the fact that compatibility relations between 
FmSm and R3 space groups lead to the following correlation schemes, Flg+ A, + E, 
and F2,+ A, + E,, so that each one of F,, and F,, representations of Fm3m con- 
tains the unity representation (A,) of R3. A non-linear coupling term, i.e. an invariant 
of the form q2E, may exist because the symmetrised square of the F,, representation 
( q 2 )  contains F2,(E) ([F,,I2 = A,, + E, + F2,; similarly, it is found that [F2J2 = A,, 
+ E, + F,,). On the other hand, the F1, representation fulfils the Landau criterion, 

since the symmetrised cube does not contain the unity representation of the space 
group ([F,,I3 = A,, + 2F,, + F2,). In contrast, the order parameter E with F2, symmetry 
determines the presence of a cubic polynomial in the free-energy expansion ([F 1' = 
A,, + F,, + F2,). Finally, both order parameters q and E satisfy the Lifschitz condition 
according to which the antisymmetrised square of the corresponding representation 
must not contain the representation of a vector ({F1,}2 = {F2,)_2 = F1,): 

R3 phase transition 
in Mi1ZrF6 compounds. Three order parameters, which completely describe the extent 
of lattice distortion through the phase transition, have been determined [l, 21: 

(i) The spontaneous strain e,, related to the strain tensor components with F,, 
symmetry in the parent phase Fm?m. 

(ii) The internal deformation of the M"(Zr)F6 octahedra, specified by a coordinate 
Q with F,, symmetry. 

(iii) The rotation of the M"(Zr)F6 octahedra around the threefold axis, specified by 
a coordinate R with F,, symmetry. 

Thus, a complete expansion of the Landau free energy will include these three order 
parameters, which can couple to each other either linearly (eQ) or non-linearly (eR2 and 
QR2). In fact, we shall not consider such a complex thermodynamic potential since the 
v 5  bending mode of the octahedra, associated with the order parameter Q ,  behaves as 
a 'hard' mode [2]. This is related to the very small values of Q measured in the rhombo- 
hedral phase, and means that the corresponding potential is quasi-harmonic. This quasi- 
harmonic potential, developed in terms of a harmonic part of the form &MEwEQ2 slightly 
perturbed by anharmonic coupling terms between Q and e (see section 2.5) will be 
considered separately, in order to account for the splitting of the v 5  mode in the 
rhombohedral phase. Thus, we are left with a free-energy expansion including two 
coupled order parameters e (F2,) and R (F,,). 

2g 

Let us now consider the specific characteristics of the Fm3m 

2.2. The free-energy expansion 

The preceding statements completely determine the form of the free-energy expansion 
and according to standard group-theoretical procedure, we write 

A@(eiRj )  = *Al(e',  + e: + e%)  - hBe4e5e6 + %(e: + et + e:) 

+ iD(e$e: + eiei + e:ei) + 4A2(R: + R i  + R:)  

+ tF(R! + RI + R i )  + 4G(R:R: + R:R: + R:R:) 

+ H(e4R2R3 + e5R1R3  + e6RlR2) + . . . . 
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In this expression, e4,  e5 and e6 are the three components of the F2, strain tensor, and 
R , ,  R 2  and R 3  are the three components of R(F,,). For the sake of simplification, 
biquadratic coupling terms of the form e2R2 have been omitted; also, the Alg 
( e ,  + e2 + e3)  and E, (2el - e2 - e3,  e2 - e3) strain tensor components as well as their 
coupling terms with R are not considered, since these quantities are not directly related 
to the transition mechanism [ 1 , 2 ] .  

We shall restrict ourselves to the discussion of rhombohedral solutions of the form 
[4,51 

which means that we consider an effective potential A@(e,  R )  such as 

A@(e,  R )  = 4 A l e 2  - 4B’e3 + fC’e4 + 4A2R2 + f F ’ R 4  + H’eR2 (3 )  
where 

B‘ = +- (1/3V?3)B C‘ = Q( c + 2 0 )  

F‘ = Q ( F +  2 G )  H’ = +- ( l / f i ) H .  

The sign of B’ depends only on the domain considered. The sign of H’ depends on the 
relative directions of the strain and of the octahedra rotation. So, the combinations 
B’ > 0, H’ > 0 and B’ < 0, H’ < 0 on the one hand and B’ > 0, H’ < 0 and B‘ < 0, 
H‘ > 0 on the other correspond respectively to energetically equivalent solutions. In the 
following, we shall consider only the non-equivalent combinations B‘ > 0, H’ > 0 and 
B’ > 0, H’ < 0;  this choice of B’ > 0 means that, in the rhombohedral phase, the 
minimum of the potential will correspond to a positive value of the spontaneous strain 
e, as defined in paper I [l]. Finally, in order to achieve the stability of the potential with 
respect to the elastic strain and to the rotatory mode, we put C’ > 0 and F’ > 0. 

2.3. The phase diagram 

The crystalline phase that is stable at a given temperature corresponds to the absolute 
minimum of A@ ( e ,  R ) ;  in particular, this implies the cancellation of the first derivatives: 

dA@/de = ( A ,  - B’e + C’e2)e + H‘R2 = 0 

aA@,/aR = (A2 + F’R2)R + 2H‘eR = 0. 
(4) 

This system of coupled equations determines the existence of three distinct phases: 
phase I ( e  = R = 0 )  corresponds to the cubic parent phase Fmsm, phase I1 ( e  # 0, R = 
0)  to a rhombohedral modification with R3m space group and phase 111 (e  # 0, R # 0)  
to the rhombohedral phase RT observed experimentally. 

Figure 1 shows the phase diagram (represented in the A l ,  A2 plane) as determined 
from model (3) with B’ > 0 (e,  > 0) and H’ < 0 (see section 2.4 for the justification of 
the sign of H’) .  This phase diagram can be compared with those previously determined 
from similar potentials [6-91. 
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PHASE I 

-..-!! Figure 1. The phase diagram obtained with the 
model potential (3),  with B’ > 0 and H’ < 0. Full 
curves and broken curves represent first-order 
and second-order phase transitions, respectively. 

Since the F m h  - R3 transition is driven by octahedra rotations [2], we put 

A2 = a2(T-  To) ( 5 )  

where a2 is a positive constant and To is the critical temperature. On the other hand, due 
to the ‘improper’ ferroelastic character of this transition [2] ,  we put 

A,  = C$, = constant (6) 

where C$ is the ‘bare’ elastic constant associated with the F,, strain. As usual, all other 
coefficients of the free-energy expansion are supposed to be temperature-independent. 
Now, from figure 1, it appears that a first-order transition I * I11 as observed experi- 
mentally is possible, provided that A = C$, lies between the values corresponding to 
the points TI and T2, i.e. 

2Bt2  2 H r 2  
- < A ,  <-+-. 2BI2 
9C’ 9C F 

According to this choice for the coefficients, together with the fact that phase I is stable 
in a wide temperature range, phase I1 is not expected to occur at all; thus, the static and 
dynamic properties of the order parameters in phase I1 will not be developed in the 
following. 

2.4.  Static properties of the order parameters 

In the parent phase I (FmTm), the spontaneous values of the order parameters e and R 
are always zero: 

e ,  = R = 0. (7) 

In phase I11 (e,  # 0, R # 0 )  with R?; space group, the equilibrium values of e and R 
are determined from the set of equations (3) and (4). From (4), it follows that 

e ,  = (A2 + F’R2)/-2H’ or R 2  = ( -2H’e,  - A2) /F ’ .  (8) 

With the choice of B‘ > 0 we have adopted (equivalent to e, > 0), it is clear that the 
stability conditions of phase I11 require, in particular, H’ < 0. 
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Now, from equations (8), it is possible to write the potential ( 3 )  as a function of a 
unique variable, e or R ,  which leads to an expansion up to the eighth order in R or, more 
conveniently, up to the fourth order in e:  

A@[T ,e ,R(e ) ]=iC’e4  -4B’e3 +&(Al  -2H”IF’)e’ - ( H ‘ / F ’ ) A 2 e - A : / 4 F .  ( 9 )  

The solution (e,  > 0) of the cubic equation that minimises the potential (9) does not have 
a simple algebraic form and an approximate relation will be considered in section 3.1 , 
in order to account more easily for the variation of e, with temperature in phase 111. 

2.5. Susceptibilities of the order parameters 

In the cubic phase I, the frequency of the triply degenerate rotatory soft mode with F1, 
symmetry is given by [lo,  111 

(10)  (jjgl, = 0 2  1 - - 0’ 2 - - 0 2  3 - - ( a z / M d ( T -  To) 

where ME is the effective mass of the oscillator. 
Similarly, in the rhombohedral phase I11 (R3), for the A, mode one can write 

w a g  = 0: = ( 2 F ‘ / M E ) R 2  (11a) 

and for the E, mode 

m i s  = 0: = 0 3  = (1/ME)[$A2 + (1 + F/F’ )R2]  (=a) 

or 

utg = 0: = 0: = ( l / M E ) [ ( l  - F/F’)A2 - H’(1 + 2 F / F ) e , ] .  (12b) 

Now, the adiabatic elastic constant [ l l ,  121 C4, in the parent phase I is given by 

C44 = Cjj  = c66 = A I  = C$4 (13)  

which is in agreement with the experimental data [2] .  Similarly, in the rhombohedral 
phase I11 it is 

C44 = CSs = c66 = C &  + ( C  + bD)e; 

- 2H”R2/ (A2  + ( F  + 3C)R’) - H”R2/ ($CR2  + H’e,). (14)  

Here, the elastic constants are defined according to the pseudo-cubic unit cell [ l ] .  
Unfortunately, no experimental data are available for C4, in the rhombohedral phase. 

2.6. The quasi-harmonic potential for the v5 bending mode of the octahedra 

As stated above (see section 2.1) the quasi-harmonic potential V,  for the v ‘hard’ mode 
of the octahedra (symmetry FZg), relative to the coordinate Q [ l ] ,  is developed in terms 



7400 V Rodriguez and M Couzi 

of a harmonic potential vh, slightly perturbed by anharmonic coupling terms V, between 
the coordinate Q and the elastic strain components with the same symmetry: 

Va(Qi, ej) = Vh(Qi) + Vc(Qi, ej). (15) 

(16) 

According to standard group-theoretical procedure, it follows that 

Vh(Qi) = iMkmk2(Qt + Q? + Q:) 

vc(Qi, ej) = I(Qie4 + Q Z ~ S  + Q3e6)+J(QleSe6 + Q2e4e6 + Q3e4es) 

+ K(Qi Q2e.5 + Q i  Q3es + QzQ3e4) + W Q t e ;  + Q?e: + Qiei) 

+N(QiQZe4es +QiQ3eoe6+QzQ3ese6)+. . . (17) 

where M h  and mk are the effective mass and the frequency of the oscillator, respectively, 
Q,, Q2 and Q3 the three components of the triply degenerate coordinate Q, and e4, e5 
and e6 the elastic strain components with FZg symmetry (see equation (1)). 

In the rhombohedral phase, R3, we have 

Ql  = k Q2 = ? Q3 = & ( l / ~ ) Q  (18) 

and this potential, developed up to the fourth order (terms of the form Q2e2) is stable in 
this phase as long as L + 2N > 0. 

The equilibrium value of the coordinates Q can be obtained by introducing V, (15) 
in the thermodynamic potential (1). If we assume that the bilinear coupling terms of the 
form Qe are predominant in (17) (higher-order coupling terms are neglected here), then 
we obtain a direct proportionality relation between Q and e, in the rhombohedral phase: 

Q = (Z/Mkmh2)es. (19) 

Of course, in the cubic phase I, we have Q = e, = 0. Note that this procedure leads to a 
small renormalisation of the A i  coefficient in (3), which has been neglected in the 
preceding sections. 

Taking account of equations (2), the frequency of the FZg v5  mode in the cubic phase 
Fm3m is 

(20) 

(21) 

(22) 

r2 - = = = &2* 
cL)F2g - 

In the rhombohedral phase R3, one obtains for the A, mode 

mkZg = mi2 = mk2 + (1/Mh)[2K’es + ( L  + 2N)ef] 

m;2g = mi2 = mi2 = mb2 + (l/Mk)[-K’e, + ( L  - we;] 

and for the E, mode 

where K’ = K/V% 

3. Comparison with experimental data 

The equations established in section 2 from the model potentials (1) and (15) must be 
able to reproduce the static properties and susceptibilities of the order parameter e, R 
and Q, through the Fm3m R?; phase transition. The discussion will now be focused 
on the case of CoZrF6, where most of these quantities could be measured in both the 
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cubic and rhombohedral phases [l, 21. All fits have been performed with the help of 
computer programs using a least-squares and/or Newton-Raphson iterative method. 

3.1. Approximate equation for the temperature dependence of the spontaneous strain e, 

As mentioned previously, a convenient algebraic form for the temperature dependence 
of the spontaneous strain e, in the rhombohedral phase R3 cannot be derived from 
equation (9) because of the e3 cubic term in the free-energy expansion. Approximate 
relations have been considered already in the case of a similar potential developed for 
the 'trigger'-type [13] phase transition of benzyl [14]. 

In the case of M"ZrF6 compounds, a first-order Fm3m c) R3 transition can be 
accounted for by a simplified potential of the form [9]: 

(23) 

where all coefficients are positive and constant. 
It should be pointed out that this potential is incomplete. Indeed, the introduction 

of the R6 term is equivalent to a development up to the third order in e ,  because of the 
coupling term eR2, but at the same time, we neglect in (23) the e3 invariant allowed by 
symmetry. Nevertheless, let us minimise (23) with respect to e and R ;  then one obtains 
for the rhombohedral phase 

A @ ( T ,  R ,  e) = ta(T - To)R2 - 4pR4 + &yR6 + 4C&e2 - AeR2 

p' + [p'* - 4ay(T-  T O ) p  A 
2Y c& (24) - e, = 

and 

R 2  = (C&/A)e, (25) 

p' = p + (2A2/Cj4) 

with 

(P' ' 0) .  
In a first step, we have fitted the experimental values of the spontaneous strain e, in 
CoZrF6 (this is the quantity where the best accuracy is obtained) with the help of 
equation (24). The result obtained with the following set of coefficients: 

e, = 6.16 x + (6.843 x - 2.40 x 10-6T)1/* (26) 

is shown in figure 2; the agreement between calculated and observed values is quite 
satisfactory. However, the coefficients so obtained cannot be related to those appearing 
in the model potential (3). Clearly, relation (26) must be considered as a semi-empirical 
equation, able to reproduce the thermal evolution of e, in the rhombohedral phase. 

Now, from equation (26), we have tried to adjust the values of R using relation (25). 
This gives 

R 2 ( m 2 )  = 5.82 x 10-20e,. (27) 

As shown in figure 3 (broken curve), the agreement with experimental data is rather 
poor; this is a clear illustration of the incompleteness of the potential (23). There is not 
a direct proportionality relation between R2 and e, as given by equation (25), which 
probably has to be related to the fact that the Co(Zr)F6 octahedra are not perfect rigid 
bodies [ 11, 
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1 I l.., Q in CoZrF,. Circles are experimental points 

O J  I I 1 ,  0 1  I I I ,, 
0 100 200 300 0 100 200 300 

T ( K )  T (K) 

Figure 2. The thermal evolution of the spon- 
taneous strain in CoZrF,. Circles are exper- 
imental points taken from [l] and the full curve 
represents the best fit according to equation (26) .  

Figure 3. The thermal evolution of the coordinate 
R in CoZrF,. Circles are experimental points 
taken from [l]; the broken curve and full curve 
represent the best fits according to equation (27) 
and equation (28), respectively. 

0.0" 0.0 1 

Figure 4. The thermal evolution of the coordinate 

3.2. The static properties of the order parameters R and Q 

With the help of the semi-empirical equation (26), it is now possible to fit all other 
interesting quantities, according to the model potential (1). So, the fit of R values after 
relations ( 5 ) ,  (8) and (26) leads to the result 

R2(m2)  = 5.68 x e,  - 0.76 x 10-24(T - 205). (28) 
The agreement between calculated and measured values is now much more satisfactory 
(figure 3, full curve). From this fit, a number of coefficients have been evaluated, namely 
To = 205 K, a2 /F  = 0.76 X m2; of course, all 
these values will be kept in following adjustments, when necessary. 

m2 K-' and H'/F'  = -2.84 X 

Similarly, with the help of equations (19) and (26) one obtains for Q: 

Q(m) = 0.70 x e,. (29) 
There are important errors in the measurements of Q values; however, the general trend 
for the variations of Q as a function of temperature is well reproduced by equation (29) 
(figure 4). 

3.3. The frequencies of the soft rotatory mode 

As mentioned previously [2], it was not possible to assign the two components of the 
soft rotatory mode of the octahedra in the phase R3 in terms of A, and E, symmetry. 
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I *\r 

0 100 200 3 00 
T ( K )  

Figure 5. The thermal evolution of the soft rota- 
tory mode frequencies in CoZrF6. Circles are 
experimental points taken from [2] and full curves 
represent the best fit according to equations (30), 
(31) and (32) ( w A g  > wEg in the rhombohedral 
phase). 

..r\ 
10 *.. . 

0 100 200 300 
T ( K )  

Figure 6. The thermal evolution of the soft rota- 
tory mode frequencies in CoZrF6. Circles are 
experimental points taken from [2] and full curves 
represent the best fits according to equations (33), 
(34) and (35) (oEg > w A g  in the rhombohedral 
phase). 

Thus, the two possible assignments will be considered successively, i.e. w A  > wEg and 
wEg > wAg. In both cases one has to take account of the direct proportionafity relation 
existing between m a ,  and R 2 ,  as given by equation (l la).  Then with the parameter To = 
205 K fixed (see section 3.2), the frequency wEg is deduced from wAg with the help of 
only one adjustable parameter, namely F/F' (see equations (12a) and (12b)). 

(i) w A g >  wEg. From equations ( l l ) ,  (12), (26) and (28), the best fits (figure 5 )  are 
given by 

W ~ , ( S - ~ )  = 96 x 

w $ ~ ( s - ~ )  = 149.6 x 

R 2  = 545 x loz4 e, - 73 x 10'' (7'- 205) (30) 

(31) 

and 

e, + 34.7 x 10'' (T-205). 

All coefficients so obtained fulfil the stability conditions of the potential (3) in the 
rhombohedral phase. Consequently, the frequency of the inactive F,, rotatory mode in 
the cubic phase, deduced from equation (lo), is given by figure 5 .  

o$,~(s-') = 36.5 X 10'' ( T  - 205). 

o$,(s-~) = 25 x 

o$,(s-~) = 553.8 x 

o$~,(s-~)  = 9.5 x 10'' (7' - 205). 

(32) 

(ii) wEp > w A  . Following the same procedure, the best fits to the experimental data 
in the rhombohedral phase (figure 6) are now given by 

R 2  = 139 x loz4 e, - 19 x lozo ( T -  205) (33) 

(34) 

(35) 

and 

e, - 59.9 x lozo (7'- 205) 

so that the frequency of the F,, mode in the cubic phase (figure 6) is 

It should be pointed out that lattice dynamics calculations made on simple fluorides such 
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as AlF3 in their rhombohedral structural modification (R3c) are in accordance with case 
(i) [15]. However, when considering our data alone, the choice between (i) and (ii) is 
not obvious, since both cases lead to good fits of the experimental results (figures 5 and 
6), with coefficients that fulfil the stability conditions of phase R3. In fact, case (i), with 
F'/F = 0.05, corresponds to a very anisotropic potential for the rotatory mode ( F  G 
after equations (1) and (3)), whereas in case (ii), with F/F' = 7.30, this potential is much 
more isotropic ( F  > G). 

Finally, whatever the exact assignment may be, the inferred values for the soft 
rotatory mode frequencies in the cubic phase are always very small (wF1, = 20 cm-' at 
300 K in case (i) and uFlg = 10 cm-' at 300 K in case (ii)). This means that the cor- 
responding potentials are rather flat, auguring for the existence of orientational disorder 
of the octahedra. Indeed, such a picture is in agreement with the x-ray diffuse scattering 
patterns observed with CoZrFd in the cubic phase [l]. Furthermore, it has been 
mentioned [2] that the A, and E, components of the rotatory mode exhibit a considerable 
broadening in the rhombohedral phase, just below the transition temperature, which 
could be due to premonitory effects of octahedra disorder [2]. Then, because of disorder, 
the F,, mode in the cubic phase may be expected to be heavily damped or of diffusive 
nature; since it is optically inactive, inelastic neutron scattering experiments are nec- 
essary to confirm such a hypothesis. 

V Rodriguez and M Couzi 

3.4.  The splitting of the vs bending mode 

According to previous data obtained with rhombohedral CSSbF6 single crystal [16], the 
v 5  component of highest frequency has E, symmetry and the other one A,. By taking 
the same assignment in CoZrF6, the best fits to the experimental data according to 
equations (21), (22) and (26) gives in the rhombohedral phase 

O : ~ ( S - * )  = 56.03 x - 39.5 x e, + 458 x et (36) 

uk2g(s-2)  = 56.03 x + 19.5 x e ,  + 3345 x 1024e: (37) 

u ~ ~ , ( s - ' )  = 56.03 x (38) 

and 

which means that in the cubic phase (equation (20)) 

The stability condition L + 2N > 0 is fulfilled and again the quality of the fits is quite 
satisfactory (figure 7 ) .  

4. Conclusions 

In order to account for the FmTm t) R3 phase transition occurring in M"ZrF6 ordered 
fluorides, we have developed a microscopic model that is able to reproduce consistently 
all experimental results obtained with CoZrF6. The octahedra rotation appears clearly 
to be the driving order parameter for the transition. Because of the three-dimensional 
arrangement of the octahedra, this rotation induces a set of internal strains, resulting in 
a small local deformation of the octahedra and, more significantly, to a rhombohedral 
distortion of the unit cell. The model takes account of all these phenomena. Then, the 
spontaneous strain that characterises the rhombohedral phase appears to be a secondary 
order parameter ('improper' ferroelastic phase transition). 
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.. 
Figure7. The thermalevolutionof the frequencies 
of the v 5  bending mode in CoZrF6. Circles are 
experimental points taken from [2] and full curves 

0 100 200 3 00 represent the best fit according to equations (36), 

56 1.. :**.:.,---:'- "f 
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T ( K l  (37) and (38). 

The behaviour of the soft rotatory modes in CoZrF6 is well reproduced, as well as 
the temperature-dependent splitting of the v 5  internal bending mode of the octahedra. 
Thus, the transition is essentially of displacive nature. However, an order-disorder 
contribution may also take place in the close vicinity of the transition temperature. 
Inelastic neutron scattering and neutron diffraction experiments on single crystals would 
be desirable to analyse such phenomena. Also, it should be pointed out that preliminary 
results obtained with ZnZrF6 [l, 2,9] are not at variance with the model predictions. 
Clearly, there exists a strong analogy in the behaviour of CoZrF6 and ZnZrF6 but the 
fits from the model are less meaningful with ZnZrF6 [9] because a number of important 
experimental data are still missing. 

Finally, the model with two coupled order parameters predicts the existence of 
another rhombohedral phase with space group R3m, which has not been observed in 
M"ZrF6 fluorides, but seems to be stable in BaSiF6 or BaGeF, [17,18]. According to 
the present analysis, an eventual transition from Fm3m to R3m would be 'proper' 
ferroelastic; thus, BaSiF6 and BaGeF6 are good candidates to probe further the phase 
diagram deduced from the model. 
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